Rabu, 23 November 2016

AVL Tree c++

#include <cstdlib>
#include <iostream>

using namespace std;
#include<stdio.h>
#include<stdlib.h>

// An AVL tree node
struct Node
{
    int key;
    struct Node *left;
    struct Node *right;
    int height;
};

// A utility function to get maximum of two integers
int max(int a, int b);

// A utility function to get height of the tree
int height(struct Node *N)
{
    if (N == NULL)
        return 0;
    return N->height;
}

// A utility function to get maximum of two integers
int max(int a, int b)
{
    return (a > b)? a : b;
}

/* Helper function that allocates a new node with the given key and
    NULL left and right pointers. */
struct Node* newNode(int key)
{
    struct Node* node = (struct Node*)
                        malloc(sizeof(struct Node));
    node->key   = key;
    node->left   = NULL;
    node->right  = NULL;
    node->height = 1;  // new node is initially added at leaf
    return(node);
}

// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct Node *rightRotate(struct Node *y)
{
    struct Node *x = y->left;
    struct Node *T2 = x->right;

    // Perform rotation
    x->right = y;
    y->left = T2;

    // Update heights
    y->height = max(height(y->left), height(y->right))+1;
    x->height = max(height(x->left), height(x->right))+1;

    // Return new root
    return x;
}

// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct Node *leftRotate(struct Node *x)
{
    struct Node *y = x->right;
    struct Node *T2 = y->left;

    // Perform rotation
    y->left = x;
    x->right = T2;

    //  Update heights
    x->height = max(height(x->left), height(x->right))+1;
    y->height = max(height(y->left), height(y->right))+1;

    // Return new root
    return y;
}

// Get Balance factor of node N
int getBalance(struct Node *N)
{
    if (N == NULL)
        return 0;
    return height(N->left) - height(N->right);
}

// Recursive function to insert key in subtree rooted
// with node and returns new root of subtree.
struct Node* insert(struct Node* node, int key)
{
    /* 1.  Perform the normal BST insertion */
    if (node == NULL)
        return(newNode(key));

    if (key < node->key)
        node->left  = insert(node->left, key);
    else if (key > node->key)
        node->right = insert(node->right, key);
    else // Equal keys are not allowed in BST
        return node;

    /* 2. Update height of this ancestor node */
    node->height = 1 + max(height(node->left),
                           height(node->right));

    /* 3. Get the balance factor of this ancestor
          node to check whether this node became
          unbalanced */
    int balance = getBalance(node);

    // If this node becomes unbalanced, then
    // there are 4 cases

    // Left Left Case
    if (balance > 1 && key < node->left->key)
        return rightRotate(node);

    // Right Right Case
    if (balance < -1 && key > node->right->key)
        return leftRotate(node);

    // Left Right Case
    if (balance > 1 && key > node->left->key)
    {
        node->left =  leftRotate(node->left);
        return rightRotate(node);
    }

    // Right Left Case
    if (balance < -1 && key < node->right->key)
    {
        node->right = rightRotate(node->right);
        return leftRotate(node);
    }

    /* return the (unchanged) node pointer */
    return node;
}

// A utility function to print preorder traversal
// of the tree.
// The function also prints height of every node
void preOrder(struct Node *root)
{
    if(root != NULL)
    {
        printf("%d ", root->key);
        preOrder(root->left);
        preOrder(root->right);
    }
}

/* Drier program to test above function*/
int main(int argc, char *argv[])
{
    struct Node *root = NULL;

  /* Constructing tree given in the above figure */
  root = insert(root, 10); 
  root = insert(root, 20);
  root = insert(root, 30);
  root = insert(root, 40);
  root = insert(root, 50);
  root = insert(root, 25);  //replace as number desideratum

  /* The constructed AVL Tree would be
            30
           /  \
         20   40
        /  \     \
       10  25    50
  */

  printf("Preorder traversal of the constructed AVL"
         " tree is \n");
  preOrder(root);
    system("PAUSE");
    return EXIT_SUCCESS;
}


0 komentar:

Posting Komentar